Movimiento ondulatorio armónico
Y =f(x-vt) describe la propagación de una perturbación representada por la función f(x), sin distorsión, a la largo del eje X, hacia la derecha, con velocidad v.
Estudiamos un caso particular importante, aquél en el que la función f(x) es una función armónica (seno o coseno).Las características de esta función de dos variables, son las siguientes:
- La función seno es periódica y se repite cuando el argumento se incrementa en 2p . La función Y(x, t) se repite cuando x se incrementa en 2p/k.
Se trata de una función periódica, de periodo espacial o longitud de onda l =2p/k. La magnitud k se denomina número de onda.
- Cuando se propaga un movimiento ondulatorio armónico, un punto x del medio describe un Movimiento Armónico Simple de amplitud Y0 y frecuencia angular w =kv.
Y(x,t)=Y0·sen (kx-w t)
El periodo de la oscilación es P=2p/w , y la frecuencia f =1/P.
- La igualdad w =kv, nos permite relacionar el periodo espacial o longitud de onda l y el periodo de la oscilación P de un punto del medio.
La longitud de onda λ está relacionada con la frecuencia f de la forma l =v/f . Para una velocidad de propagación v, cuanto mayor es la longitud de onda menor es la frecuencia y viceversa.
Ondas transversales en una cuerda
El applet representa la propagación de una onda transversal, y con ella trataremos de mostrar las características esenciales del movimiento ondulatorio armónico.Se introduce
- la longitud de la onda λ, en el control de edición titulado Longitud de onda
- la velocidad de propagación v, en el control de edición titulado Velocidad p.
Se observa la propagación de una onda armónica a lo largo del eje X, hacia la derecha. Podemos observar que cualquier punto del medio, en particular el origen o extremo izquierdo de la cuerda, describe un Movimiento Armónico Simple, cuyo periodo podemos medir y comprobar que es igual al cociente entre la longitud de onda y la velocidad de propagación P=l /v.Pulsando el botón Pausa, podemos congelar el movimiento ondulatorio en un instante dado, y observar la representación de una función periódica, cuyo periodo espacial o longitud de onda, es la distancia existente entre dos picos consecutivos, dos valles, o el doble de la distancia entre dos nodos (puntos de corte de la función con el eje X). Esta distancia es la misma que hemos introducido en el control de edición titulado Longitud de onda.
Para reanudar el movimiento se pulsa en el mismo botón titulado ahora Continua.
Podemos ahora, observar la propagación de la perturbación y en particular, de un pico señalado por un pequeño círculo y fijarnos en su desplazamiento a lo largo del eje X. Comprobaremos utilizando el botón titulado Paso, que se desplaza una longitud de onda en el periodo de una oscilación l=vP.Por último, sin cambiar la velocidad de propagación, se modifica la longitud de onda y se aprecia que a mayor longitud de onda, el periodo de las oscilaciones es mayor y la frecuencia menor y viceversa, l =v/f.Y(x,t)=Y0·sen k(x-vt)
No hay comentarios:
Publicar un comentario